
SQL Server Performance Tuning and Monitoring Tutorial

SQL Server is a great platform to get your database application up and running fast. The graphical interface of
SQL Server Management Studio allows you to create tables, insert data, develop stored procedures, etc... in no
time at all. Initially your application runs great in your production, test and development environments, but as
use of the application increases and the size of your database increases you may start to notice some
performance degradation or worse yet, user complaints.

This is where performance monitoring and tuning come into play. Usually the first signs of performance issues
surface from user complaints. A screen that used to load immediately now takes several seconds. Or a report
that used to take a few minutes to run now takes an hour. As I mentioned these issues usually arise from user
complaints, but with a few steps and techniques you can monitor these issues and tune accordingly, so that
your database applications are always running at peak performance.
In this tutorial we will cover some of the common issues with performance such as

 deadlocks

 blocking

 missing and unused indexes

 I/O bottlenecks

 poor query plans

 statistics

 wait stats

 fragmentation

We will look at basic techinques all DBAs and Developers should be aware of to make sure their database
applications are performing at peak performance.

SQL Server query tuning can be categorized into three broad steps:

1. Basic query analysis
2. Advance query analysis
3. Facilitate tuning by using DB Performance monitoring tool

Here are 12 quick tips that can help a DBA improve query performance in a measurable way and at the same
time provide certainty that the specific alteration has actually improved the speed of the query.
1. Basic query analysis
DBAs need visibility into all layers and information on expensive queries in order to isolate the root cause.
Effective tuning requires knowing top SQL statements, top wait types, SQL plans, blocked queries, resource
contention, and the effect of missing indexes. Start with the basics—knowing exactly what you’re dealing with
before you dive in can help.

https://www.dnsstuff.com/sql-server-performance-tuning-tips#one
https://www.dnsstuff.com/sql-server-performance-tuning-tips#two
https://www.dnsstuff.com/sql-server-performance-tuning-tips#three

Tip 1: Know your tables and row counts
First, make sure you are actually operating on a table, not view or table-valued function. Table-valued functions
have their own performance implications. You can use SSMS to hover over query elements to examine these
details. Check the row count by querying the DMVs.
Tip 2: Examine the query filters, WHERE and JOIN clauses and note the filtered row count
If there are no filters, and the majority of table is returned, consider whether all that data is needed. If there are
no filters at all, this could be a red flag and warrants further investigation. This can really slow a query down.
Tip 3: Know the selectivity of your tables
Based upon the tables and the filters in the previous two tips , know how many rows you’ll be working with, or
the size of the actual, logical set. We recommend the use of SQL diagramming as a powerful tool in assessing
queries and query selectivity.
Tip 4: Analyze the additional query columns
Examine closely the SELECT * or scalar functions to determine whether extra columns are involved. The more
columns you bring back, the less optimal it may become for an execution plan to use certain index operations,
and this can, in turn, degrade performance.
2. Advanced query analysis
Tip 5: Knowing and using constraints can help
Knowing and using constraints can be helpful as you start to tune. Review the existing keys, constraints, indexes
to make sure you avoid duplication of effort or overlapping of indexes that already exist.To get information
about your indexes, run the sp_helpindex stored procedure:

Tip 6: Examine the actual execution plan (not the estimated plan)
Estimated plans use estimated statistics to determine the estimated rows; actual plans use actual statistics at

runtime. If the actual and estimated plans are different, you may need to investigate further.

Tip 7: Record your results, focusing on the number of logical I/Os
If you don’t record the results, you won’t be able to determine the true impact of your changes.
Tip 8: Adjust the query based on your findings and make small, single changes at a time
Making too many changes at one time can be ineffective as they can cancel each other out! Begin by looking for
the most expensive operations first. There is no right or wrong answer, but only what is optimal for the given
situation.
Tip 9: Re-run the query and record results from the change you made
If you see an improvement in logical I/Os, but the improvement isn’t enough, return to tip 8 to examine other
factors that may need adjusting. Keep making one change at a time, rerun the query and comparing results until
you are satisfied that you have addressed all the expensive operations that you can.
Tip 10: If you still need more improvement, consider adjusting the indexes to reduce logical I/O
Adding or adjusting indexes isn’t always the best thing to do, but if you can’t alter the code, it may be the only
thing you can do. You can consider the existing indexes, a covering index and a filtered index for improvements.
Tip 11: Rerun the query and record results
If you have made adjustments, rerun the query and record those results again.
Tip 12: Engineer out the stupid
Lookout for frequently encountered inhibitors of performance like: code first generators, abuse of wildcards,
scalar functions, Nested views, cursors and row by row processing.
3. Use a DB Performance monitoring tool to facilitate query tuning.
Traditional database monitoring tools focus on health metrics. Current application performance management
tools provide hints, but do not help find the root cause.

